Security Analysis of a Dynamic Threshold Secret Sharing Scheme Using Linear Subspace Method
نویسندگان
چکیده
A dealer-free and non-interactive dynamic threshold secret sharing scheme has been proposed by Harn et.al., in 2015. In this scheme, a (t; n) secret sharing scheme in secret reconstruction phase can turn into a (m;n) scheme in secret reconstruction phase, where m is the number of participanting shareholders. It has been claimed that the secrecy of shares and the secrecy of the secret are unconditionally preserved if m 2 (t; 1 + t(t+ 1)=2]. This paper provides a security analysis of this scheme in two directions. Firstly, we show that this scheme does not have the dynamic property, i.e. any t+ 1 released values are sufficient to reconstruct the secret, even the agreed updated threshold is larger. Secondly, we show that any t+ 1 released values are sufficient to forge the released value of a non-participating shareholder. The technique that we enjoyed for our analysis is the linear subspace method, which basically measures the information leaked by the known parameters of the scheme by computing the dimension of the linear subspace spanned by these parameter. This method has shown to be capable of cryptanalysis of some secret sharing based schemes, whose security relies on keeping the coefficients of the underlying polynomial(s) secret.
منابع مشابه
A Fast Publicly Verifiable Secret Sharing Scheme using Non-homogeneous Linear Recursions
A non-interactive (t,n)-publicly veriable secret sharing scheme (non-interactive (t,n)-PVSS scheme) is a (t,n)-secret sharing scheme in which anyone, not only the participants of the scheme, can verify the correctness of the produced shares without interacting with the dealer and participants. The (t,n)-PVSS schemes have found a lot of applications in cryptography because they are suitable for<...
متن کاملSecurity Analysis of a Hash-Based Secret Sharing Scheme
Secret sharing schemes perform an important role in protecting se-cret by sharing it among multiple participants. In 1979, (t; n) threshold secret sharing schemes were proposed by Shamir and Blakley independently. In a (t; n) threshold secret sharing scheme a secret can be shared among n partic-ipants such that t or more participants can reconstruct the secret, but it can not be reconstructed b...
متن کاملOn the design and security of a lattice-based threshold secret sharing scheme
In this paper, we introduce a method of threshold secret sharing scheme (TSSS) in which secret reconstruction is based on Babai's nearest plane algorithm. In order to supply secure public channels for transmitting shares to parties, we need to ensure that there are no quantum threats to these channels. A solution to this problem can be utilization of lattice-based cryptosystems for these channe...
متن کاملAn Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves
In a (t,n)-threshold secret sharing scheme, a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together, but no group of fewer than t participants can do. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao, and the intractability of the elliptic curve discrete logar...
متن کاملDesign and formal verification of DZMBE+
In this paper, a new broadcast encryption scheme is presented based on threshold secret sharing and secure multiparty computation. This scheme is maintained to be dynamic in that a broadcaster can broadcast a message to any of the dynamic groups of users in the system and it is also fair in the sense that no cheater is able to gain an unfair advantage over other users. Another important feature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017